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Abstract

Currently, many large language models (LLMs) are utilized for soft-
ware engineering tasks such as code generation. The emergence of
more advanced models known as large reasoning models (LRMs),
such as OpenAl’s 03, DeepSeek R1, and Qwen3. They have demon-
strated the capability of performing multi-step reasoning. Despite
the advancement in LRMs, little attention has been paid to sys-
tematically analyzing the reasoning patterns these models exhibit
and how such patterns influence the generated code. This paper
presents a comprehensive study aimed at investigating and uncov-
ering the reasoning behavior of LRMs during code generation. We
prompted several state-of-the-art LRMs of varying sizes with code
generation tasks and applied open coding to manually annotate the
reasoning traces. From this analysis, we derive a taxonomy of LRM
reasoning behaviors, encompassing 15 reasoning actions across
four phases.

Our empirical study based on the taxonomy reveals a series of
findings. First, we identify common reasoning patterns, showing
that LRMs generally follow a human-like coding workflow, with
more complex tasks eliciting additional actions such as scaffolding,
flaw detection, and style checks. Second, we compare reasoning
across models, finding that Qwen3 exhibits iterative reasoning
while DeepSeek-R1-7B follows a more linear, waterfall-like ap-
proach. Third, we analyze the relationship between reasoning and
code correctness, showing that actions such as unit test creation
and scaffold generation strongly support functional outcomes, with
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LRMs adapting strategies based on task context. Finally, we evalu-
ate lightweight prompting strategies informed by these findings,
demonstrating the potential of context- and reasoning-oriented
prompts to improve LRM-generated code. Our results offer insights
and practical implications for advancing automatic code generation.
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1 Introduction

Large language models (LLMs) have become increasingly prominent
in software engineering, particularly in the domain of automated
code generation. Tools like GitHub Copilot [15] demonstrate the
utility of LLMs by producing code that is often syntactically correct
and contextually plausible [2]. These models assist with tasks such
as code completion, code summarization, and bug fixing, offering
substantial productivity gains. However, LLM-generated code often
lacks deeper semantic understanding, leading to issues such as func-
tional requirement violations [41], hallucinations [22], and outputs
that do not align with user intent. Additionally, their “black-box”
nature [42] and limited capacity for robust reasoning pose serious
challenges to their reliability in practical software development.
The emergence of Large Reasoning Models (LRMs) represents a
significant advancement in model reasoning capabilities. Notable
examples include OpenATI’s 03 [32], Anthropic Claude 4 [1], Qwen3
[38], and QwQ [35]. These models generate explicit intermediate
reasoning steps, commonly called reasoning traces , which offer
valuable insight into how outputs are produced [29]. In contrast to
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& We are given a function signature and a docstring that seems to be incorrect or misstated
The function name is _reset_logging and it is a class method (since it has cls as first parameter)
The docstring mentions parameters cli_args and answer._file_args but the function signature only has cls

However, the function signature we must generate is exactly as provided: def _reset_logging(cls)

But note: the docstring is inconsistent and repeats the same parameters. We must generate code that matches

the signature.
Since the function is named _reset_logging , it likely resets the logging configuration

However, the docstring says: "Validates and prints the deprecated arguments." which doesn't match the function

name.

Given the instructions, we must output the code for the function exactly with the given signature and the
provided docstring

Figure 1: An motivating example where DeepSeek-R1 is
thinking before generating code.

traditional LLMs that primarily rely on pattern matching, LRMs are
designed for multi-step deliberation and better generalization to
complex problems [5]. This enhanced reasoning improves effective-
ness and also plays a crucial role in transparency and interpretabil-
ity, fostering understanding, building user trust, and ensuring align-
ment in application tasks. For instance, as illustrated in Figure 1,
DeepSeek-R1 identifies a given signature as a class method based
on the cls parameter and detects ambiguities in the signature and
docstring during its internal reasoning before generating code.

On the other hand, to better understand the reasoning capa-
bilities of language models, recent research has proposed various
taxonomies describing how models reason across different domains.
Several studies [4, 29, 30, 33] focus on general problem-solving, cri-
tique, mathematical reasoning, and structured reasoning phases.
While these taxonomies offer valuable insights, they are not tailored
to code-related tasks, limiting their relevance to code generation.
In contrast, other works [27, 37] examine reasoning in code gener-
ation, highlighting issues in logical consistency and control flow.
However, these studies evaluate traditional LLMs and do not inves-
tigate the reasoning traces (as shown Figure 1) of large reasoning
models (LRMs). As a result, existing literature either overlooks code
generation or focuses on models not designed for explicit reasoning
traces. This raises an important question: How do LRMs perform
reasoning in code generation, and are there identifiable patterns in
their reasoning behaviors?

Taxonomy. To bridge this gap, we analyze reasoning traces of
LRMs in code generation, aiming to uncover and model common
reasoning behaviors in how models interpret prompts and generate
code, thereby offering insights to improve code generation tech-
niques. We focus on five open-source Qwen-series LRMs, including
DeepSeek-R1-7B, Qwen3-(1.7B, 8B, 14B), and QwQ-32B, evaluated
on Python tasks from the CoderEval benchmark [39] using prompts
designed to elicit explicit reasoning. To identify reasoning behav-
iors, we apply an open coding method to manually annotate 1,150
traces across different task complexities from the five models, not-
ing recurring reasoning actions. We organize these behaviors into
four phases, merging and refining similar actions to construct a
taxonomy of 15 reasoning actions, spanning from requirements
gathering to reflection.

Study. Building on this taxonomy, we conduct an empirical
study to address a series of research questions. RQ1: We iden-
tify common reasoning patterns in LRM-based code generation
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by analyzing the sequence of reasoning actions within traces. The
results show that LRMs generally follow a human-like coding work-
flow—analyzing requirements, clarifying ambiguities, comparing
solutions, implementing code, and reviewing for defects—while
simpler tasks involve lighter reasoning, and more complex tasks
trigger additional actions such as scaffolding, flaw detection, or
style checks. RQ2: We compare reasoning behaviors across differ-
ent LRMs. The results indicate that Qwen3 models exhibit highly
similar, iterative reasoning patterns, whereas DeepSeek-R1-7B fol-
lows a more linear, waterfall-like approach, likely reflecting dif-
ferences in the reasoning traces used during training. RQ3: We
analyze how reasoning behaviors impact functional correctness by
correlating Pass@1 with reasoning actions and patterns. Unit test
creation and complete code generation strongly support correct-
ness, and LRMs adjust their reasoning strategies such as knowledge
recall, alternative exploration, scaffold code generation, and edge
case generation based on task dependency and context. RQ4: We
evaluate the feasibility of two lightweight prompting strategies as
potential improvements over the initial prompt, motivated by the
key findings. The results highlight the potential of incorporating
context or reasoning-oriented guidelines into prompts to enhance
LRM-generated code. Beyond the empirical results, we also derive
practical implications for researchers and developers to facilitate
the advancement and application of LRM code generation.
The contributions of this paper are as follows:

e We develop a comprehensive taxonomy of 15 reasoning ac-
tions across 4 phases in LRM-based code generation.

e We conduct an empirical study that uncovers common rea-
soning patterns, highlights differences in reasoning behaviors
across models, analyzes the impact of reasoning behaviors on
functional correctness, and evaluates the feasibility of light-
weight prompting improvements.

o We release a dataset of 1,150 annotated reasoning traces to
support future research on the reasoning capabilities of LRMs.

2 Study Setup

Figure 2 presents an overview of the methodology employed in this
study. We begin by prompting five selected large reasoning models
(LRMs) to generate reasoning traces on 230 code generation tasks.
Two human annotators then apply open coding methodology on
the collected 230 x5 = 1, 150 reasoning traces to manually construct
a taxonomy of reasoning behaviors exhibited by LRMs, resulting in
15 distinct reasoning actions organized across 4 phases.

Building on this taxonomy, we conduct an empirical study to
address a series of research questions. First, we examine the com-
mon patterns of action combinations and analyze the rationales
underlying these reasoning patterns (RQ1). Next, we compare dif-
ferent LRMs in terms of the reasoning actions and patterns they
employ, highlighting similarities and discrepancies (RQ2). We then
investigate how reasoning behaviors influence the functional cor-
rectness of generated code and distill key insights (RQ3). Finally,
we explore the feasibility of lightweight prompting-based strate-
gies for improving LRMs and share the lessons learned (RQ4). The
research questions are listed as follows:
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Figure 2: Methodology overview of our study.

¢ RQ1 (Common Reasoning Patterns): How do LRMs com-
bine and perform individual reasoning actions during code
generation?

e RQ2 (Comparison Across Models): To what extent do dif-
ferent LRMs exhibit similar or divergent reasoning behaviors?

e RQ3 (Impact on Correctness): How do the identified rea-
soning behaviors affect the functional correctness of the gen-
erated code, and what key insights can be drawn from the
analysis?

e RQ4 (Improvement Through Prompting): How can prompt-
ing strategies informed by these behaviors enhance the effec-
tiveness of LRMs?

2.1 LRM Selection

We select target reasoning models according to the following crite-
ria: First, their internal reasoning traces must be accessible. This
excludes certain commercial models, such as OpenAI’s o-series,
which do not provide public APT access to such traces. Second, the
selected models should span a range of different sizes. Based on
these criteria, we choose the following open-source models.

e DeepSeek-R1-7B [11]: A large reasoning model developed by
DeepSeek Al based on the Qwen2.5-Math-7B model. Despite
its relatively small size, it demonstrates competitive perfor-
mance comparable to that of larger models.

e Qwen3-(1.7B, 8B, 14B) [38]: A family of reasoning-focused
models developed by Alibaba’s Qwen team, offering signifi-
cant improvements over prior versions such as Qwen2.5 and
QwQ. This study employs the 1.7B, 8B, and 14B variants to
represent lightweight, small, and medium-large sizes, respec-
tively.

o QwQ-32B [35]: A 32-billion-parameter reasoning model de-
veloped by Alibaba’s Qwen team, trained using supervised
fine-tuning followed by reinforcement learning. QwQ demon-
strates strong reasoning capabilities, achieving performance
on par with state-of-the-art models.

To better reflect real-world usage and explore the model’s natural
reasoning patterns, we adopt the default configuration (temperature

is 0.6) as recommended by model vendors [12] and typically used
by end users.

2.2 Reasoning Data Collection

To collect reasoning data, we need to determine the code generation
dataset on which to run the LRMs. We apply the following criteria
for dataset selection: First, it should be constructed from realistic
code repositories and widely adopted in prior studies; Second, it
should cover code generation tasks that involve both standalone
and non-standalone settings; Third, it should categorize tasks into
different levels of difficulty. Based on these criteria, we selected
CoderEval [39] from a pool of widely used benchmarks such as
HumanEval [7], MBPP [2], ClassEval [13], and DevEval [25].

CoderEval is specifically designed to emulate real-world code
generation challenges and is a comprehensive benchmark that si-
multaneously incorporates dependency-aware tasks and multi-level
difficulty settings. It comprises 230 tasks, each for Python and Java,
ranging from self-contained snippets to project-runnable tasks re-
quiring cross-file dependencies:

o self-contained: Fully isolated tasks that can be executed with-
out any dependencies.
slib-runnable: Tasks requiring only standard libraries, with
no need for additional packages.
o plib-runnable: Tasks that depend on third-party libraries
that must be installed.
o class-runnable: Tasks with dependencies outside the func-
tion but within the same class.
o file-runnable: Tasks with dependencies outside the class but
within the same source file.
o project-runnable: Tasks relying on code from other files
within the same project.

Although CoderEval provides both Python and Java subsets, the
Java subset suffers from an imbalanced distribution of dependency
levels—for example, the class-runnable and file-runnable categories
contain only 1 and 5 tasks, respectively. Such sparsity limits the
reliability of reasoning behavior comparisons across categories.
Moreover, a small-scale pilot study revealed no substantial differ-
ences in reasoning behaviors between Java and Python. Given these
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factors, and our primary interest in analyzing reasoning capabilities,
we focus on the Python portion of the dataset.

Each task is presented to selected large reasoning models (LRMs)
using the following prompt template that include both docstrings
and function signatures. Across 230 tasks processed with the five
LRMs, we obtain a total of 1,150 reasoning traces for analysis.

You are a Python software engineer.

Generate Python code based on the following function sig-
nature and docstring.

Output ONLY the code generated, in python markdown for-
mat.

[Function Signature]

[Docstring]

2.3 Manual Taxonomy Construction

To analyze the reasoning processes and patterns exhibited by LRMs,
we adopt an open coding protocol [23] on the reasoning traces
to manually construct a taxonomy of reasoning behaviors. The
construction process consists of two phases:

Open-Coding Annotation. We begin by randomly sampling
tasks from each dependency level, ensuring statistical validity with
a 95% confidence level and a 5% margin of error. This sampling
yields 145 tasks and their corresponding 725 reasoning traces from
five LRMs. For each reasoning trace, two annotators with more
than five years programming experience independently examine
the content to identify the underlying behaviors. They assign short,
descriptive phrases, termed reasoning actions, to sentences, para-
graphs, or sections that represent fine-grained reasoning behaviors.
During this process, the annotators use the original prompt (doc-
string and function signature) as context to accurately interpret
the trace. Next, the annotators iteratively group similar codes into
reasoning actions, refining the taxonomy through repeated review
of both the codes and traces. A reasoning trace may be mapped to
multiple categories when multiple reasoning actions are present.
Disagreements between annotators are resolved through discussion
with an arbitrator until full consensus is reached.

Reliability Validation. To validate the reliability of the taxon-
omy, the two annotators independently annotate the remaining
425 reasoning traces (corresponding to 85 tasks) using the obtained
coding schema. Each trace is reviewed to assign appropriate reason-
ing actions. If a trace cannot be classified, it is temporarily placed
in a Pending category. Inter-rater agreement is then measured us-
ing Cohen’s Kappa [9], yielding a value of 0.7054, which indicates
substantial agreement [24]. This demonstrates the robustness of
our coding schema and annotation process. Conflicts in annotation
are resolved through discussion with the arbitrator. For reasoning
traces classified as Pending, the arbitrator also assists in identifying
the underlying reasoning actions and determining whether new
actions should be introduced. Through this process, we added a
new reasoning action, Style Check, and reassigned all Pending traces
into the updated taxonomy. The final taxonomy and annotations
were reviewed and approved by all participants.

3 Reasoning Behavior Taxonomy

Based on our manual annotations, we develop a taxonomy of 15
reasoning actions across 4 different phases, as illustrated in Figure 3.
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Phase 1: Requirements Gathering: In this phase, the LRMs col-
lect and analyze all information necessary to understand the task
specified in the user prompt. This involves identifying the task itself,
interpreting the task-specific context, and detecting any constraints
or conditions that might influence the solution. By performing these
steps, the LRMs try to establish a clear understanding of both the
functional intents and any additional requirements that will guide
subsequent planning and code generation.

o Task Identification (TSK): At the start of the reasoning, the
LRMs typically identify or reiterate the task description pro-
vided in the prompt.

E.g., “.. Ineed to generate Python code based on the given function
signature and docstring. ..”
— by DeepSeek-R1-7B on Task 62b45df15108cfac7f2109dc

o Context Understanding (CTX): The LRMs examine the task-
specific context conveyed through the function signature and
docstring in the user prompt, as these elements generally cap-
ture the functional intents. In our generation setting, this con-
text primarily includes code construct elements such as vari-
ables, parameters, return values, and the basic functional logic
described in the signature and docstring. For example, the case
below shows DeepSeek-R1-7B recognizing code elements like
self and self.messages, and analyzing the intended function-
ality of the generation. Moreover, we expect that supplying
richer prompt context would lead to a broader set of analyzed
contextual elements, such as retrieved functions in retrieval-
augmented generation (RAG) settings.

E.g., “.. The function is called status_str and it’s an instance
method because it has self as the first parameter. The docstring
says it should return a string by visiting the sorted self .messages
list. For each element, it adds the prefix and the element. ...”
— by DeepSeek-R1-7B on Task 62b45df15108cfac7f2109dc
o Constraint Identification (CST): The LRMs identify limiting
factors or constraints applied to inputs, outputs, or process-
ing logic based on the given prompt. These constraints often
represent additional conditions that define either functional
or non-functional requirements. For example, in the case be-
low, the generated function is designed to be called recursively,
which raises potential performance concerns that need to be
addressed. This action is frequent because many docstrings
and function signatures describe inputs or outputs in terms of
specific value ranges or types.

E.g., “.. The docstring says that this function is called recursively
to update a partial last_applied_manifest from a Kubernetes
API response. ...”

— by DeepSeek-R1-7B on Task 62b869ebb4d922cb0e688cc6

Phase 2: Solution Planning: In this phase, the LRMs rational-
ize about how to solve the task and begin structuring a solution
before generating complete code. This involves recalling relevant
programming knowledge (e.g., language features, libraries, or com-
mon idioms), constructing the control flow and data flow of the
program, and, when necessary, comparing alternative approaches
to determine the most suitable strategy. In addition, LRMs may
recognize ambiguities or missing details in the prompt and prepare
assumptions to resolve them in subsequent steps.
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Figure 3: Reasoning action taxonomy in LRM-based code generation.

e Knowledge Recall (KRL): The LRMs recall or leverage prior
knowledge about programming languages, libraries, data struc-
tures, or common coding patterns to guide subsequent solution
steps. For example, in the case below, DeepSeek-R1-7B uses
its knowledge of Python’s defaultdict and its methods to de-
termine the correct import and inform the next steps in the
solution planning.

E.g., “.. Hmm, in Python, the collections module has a
defaultdict that has a popitem method. That method removes
and returns the least frequently used item. So maybe the code
should import defaultdict from collections. ...”

— by DeepSeek-R1-7B on Task 62b8d23748ba5a41d1c3f497

e Control Flow Construction (CFL): The LRMs design the ba-
sic logical structure of the program, primarily including control
flow and data flow, based on the task requirements and the
context identified in the previous phase. This involves deter-
mining the sequence of operations, branching logic, and data
handling steps. In the example below, DeepSeek-R1-7B con-
structs step-by-step logic, including module imports, method
definition, and conditional checks, illustrating how it organizes
control and data flow to solve the task.

E.g., “.. Then, define the validate method. Inside the method, I'll
use os.path.exists to check if the path is valid. If it is, return
True; else, return False. ...”

— by DeepSeek-R1-7B on Task 62b45df05108cfac7f2109ce

e Solution Comparison (CMP): After constructing a prelim-
inary solution structure, the LRMs may compare alternative
strategies. They evaluate different approaches in light of the
current context and select the one most suitable for the user’s
request. In the example below, Qwen3-14B compares two simi-
lar functions, reasoning about input types and processing logic
to determine an appropriate strategy. Note that, in our current
setting without a full project context, the final choice among
alternatives often relies on assumptions or random selection.

E.g., .. Another approach: look for similar functions. The other
function is update_last_appli-
ed_manifest_dict_from_resp, which probably takes a dict and
updates it with the response. So this function, for a list, would
iterate over each item in the list and apply the dict function
to each item. But the parameters here are lists, so maybe the
observer_schema and response are lists of dicts, and the function
processes each element in the list. ...”

— by Qwen3-14B on Task 62b869ebb4d922cb0e688cc6

e Ambiguity Recognition (AMB): The LRMs sometimes detect
potential ambiguities or missing information in the prompt or
current context. They flag these issues and prepare to resolve
them by making “reasonable” assumptions in the subsequent
phase. In the example below, Qwen3-14B identifies unclear
instructions in the prompt, highlighting the need for assump-
tions or clarification. Such ambiguities often stem from vague
docstrings or lack of awareness of the broader project context,
including existing logic elsewhere in the codebase.

E.g., “.. The function signature has ‘commands’ as a list, and
‘args’ as another parameter. That’s a bit unclear. Maybe the ‘com-
mands’ is the main command, and ‘args’ is the list of arguments.
Or perhaps ‘commands’ is the list of commands to execute in
sequence. But the docstring says "Run the given command(s) with
the given arguments using a subprocess." So maybe it’s supposed
to run multiple commands, each with its own arguments? ...”

— by Qwen3-8B on Task 62ece4992e6aefcf4aabbd83

Phase 3: Implementation Generation: In this phase, the LRMs
translate the solution plan designed in Phase 2 into concrete code
implementation. The process typically occurs in stages, from scaf-
fold code to a fully formed candidate function.

e Scaffold Code Generation (SCG): The LRMs sometimes gen-
erate partial or pseudo code that outlines the structure and
main operations of the solution, without producing the final
candidate code. This allows the models to roughly verify logic,
identify missing pieces, or iteratively refine the implementa-
tion. In the example below, DeepSeek-R1-7B outputs a single
expression for joining sorted messages with a prefix, illustrat-
ing the structure of the intended function without completing
the full definition.
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E.g., “.. Like this:
return ", " join(f"{prefix}{msg}" for msg in
sorted(self.messages)) ...”
— by DeepSeek-R1-7B on Task 62b45df15108cfac7f2109dc
e Complete Code Generation (CCG): After scaffolding, the
LRMs may produce the complete candidate code that imple-
ments the solution. This output includes all necessary compo-
nents, such as function definitions, control flow, and expres-
sions, ready for review or execution. In the example below,
DeepSeek-R1-7B combines the previously scaffolded expression
into a full method definition, demonstrating how scaffolded
ideas are integrated into a function.
E.g., “.. Putting it all together, the function becomes:
def status_str(self, prefix=""):
return ", ".join(f"{prefix}{msg}" for msg in
sorted(self.messages)) ...”
— by DeepSeek-R1-7B on Task 62b45df15108cfac7f2109dc

Phase 4: Reflection: In this phase, the LRMs critically evaluate
the generated code to ensure it satisfies the task requirements,
adheres to coding best practices, and handles possible edge cases.
Reflection is both a verification and refinement phase, where the
model reviews its own outputs, anticipates potential failures, and
improves robustness and clarity. The main goals are correctness,
reliability, maintainability, and alignment with the user’s implicit
or explicit expectations.

e Unit Test Creation (UTC): The LRMs generate test cases de-
rived from the prompt, docstrings, or inferred requirements
to explicitly verify code correctness. This ensures the gener-
ated code produces the expected outputs for typical inputs and
helps uncover obvious bugs early. However, since the LRMs
themselves perform the test execution and validation, the re-
sults may not fully guarantee reliability. In the example below,
DeepSeek-R1-7B designs a test for a valid IP address to confirm
that the function correctly identifies it as valid, illustrating how
test cases are tied directly to the prompt requirements.

E.g., “.. Let me think about some test cases. For example:
"192.168.0.1" should return True. ...”
— by DeepSeek-R1-7B on Task 62ece4992e6aefcf4aabbd84

e Post-Hoc Alternative Exploration (ALT): The LRMs evalu-
ate alternative strategies that differ from the initially generated
code. This helps ensure that no potentially better approach is
overlooked, and allows comparison against different libraries,
algorithms, or coding patterns. In the example below, QWQ-
32B considers multiple libraries for XML processing before
settling on the correct xmlsec implementation, illustrating how
the model iteratively explores alternatives for robustness. The
difference from Solution Comparison (CMP) is that ALT re-
flects whether alternative implementations are considered after
generating code, whereas CMP focuses on comparing potential
solutions before committing to a concrete implementation.

E.g., “.. In reality, XML signatures can be more complex because
they might sign specific parts of the document, use references,
etc. Alternatively, maybe the function is using the xmlsec library,
which is a Python binding for XML Security. Oh right, xmlsig
module might be part of that. ...”

— by QWQ-32B on Task 630629d052e177c0ba46a0al

e Edge Case Identification (EGC): The LRMs proactively rea-

son about uncommon or extreme input scenarios that could
trigger failures. This aims to strengthen code robustness by
ensuring proper handling of unexpected or incomplete data. In
the example below, Qwen3-1.7B identifies missing dictionary
keys and empty lists, demonstrating attention to possible input

anomalies and safe handling of these cases.
E.g., “.. Now, considering possible edge cases: what if the fixity is

empty? Or if the ‘files’ key is missing?...”
— by Qwen3-1.7B on Task 62b45e175108cfac7f210a19

e Flaw Identification (FLW): The LRMs examine the code for

logical or semantic errors and revise it to correct mistakes. This
step ensures that the solution behaves as intended across all
valid inputs. In the example below, QWQ-32B identifies that
using None would incorrectly filter triples and revises the logic
to account for all object nodes, illustrating careful reasoning
about functional correctness.
E.g., “.. But wait, the triple is (node, prop, parent). So, the object
of the triple is the parent. So, if there’s any such triple, then the
node has a parent. In the code above, the triple is (node, prop,
None), which would return all triples where the subject is node,
the predicate is prop, and the object is None. But that’s not correct.

Because the object can be any node. ...”
— by QWQ-32B on Task 630629d052e177c0ba46a0al

e Style Check (STY): The LRMs evaluate whether the code

adheres to coding conventions, formatting standards, and doc-
umentation best practices. Proper style ensures readability,
maintainability, and consistency with user expectations. In
the example below, DeepSeek-R1-7B confirms that the code is
properly indented, syntactically correct, and well-documented,
highlighting the model’s attention to presentation and clarity.
E.g., .. I'll make sure the code is properly indented and follows

Python syntax. ...”
— by DeepSeek-R1-7B Task ID: 62b8d22f48ba5a41d1c3f488

e Self-Assertion (SFA): The LRMs provide final closure by as-

serting that the generated code fulfills the task requirements.
This step signals confidence in the correctness and complete-
ness of the solution. In the example below, Qwen3-8B reaffirms
that the code correctly initializes the _Converter instance and
satisfies the intended function, demonstrating the model’s self-
assertion process.

E.g., “.. I think that’s a reasonable approach. So the final code

would be as above. But since the user hasn’t provided specifics,

this is an assumption. However, given the problem statement, this

seems like a logical implementation. ...”

— by Qwen3-8B on Task 62b45df05108cfac7f2109ce

Finding 1: We identified 15 reasoning actions across four
phases: Requirements Gathering, Solution Planning, Imple-
mentation Generation, and Reflection. Nearly all reasoning
traces include all four phases, with only a small portion (10%)
omitting Implementation Generation. Among the 15 actions,
most appear frequently in the reasoning process, while Scaf-
fold Code Generation (SCG), Unit Test Creation (UTC), Flaw
Identification (FLW), and Style Check (STY) occur relatively
less often (< 50%).
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Figure 4: Distribution of the top 5 common patterns across
different dependency levels.

4 Empirical Results

Based on the taxonomy, we conduct a series of experiments and
present empirical results to address the research questions.

4.1 RQ1: Common Reasoning Patterns

We count the reasoning actions in the traces and analyze the com-
mon patterns exhibited by the LRMs. A reasoning pattern is defined
as the complete combination of individual reasoning actions that
appear within a single trace.

Overall Results. Table 1 presents the top five most common
reasoning patterns observed in reasoning traces. The most frequent
pattern, FP1, accounts for approximately 17% of all traces. This
aligns with the action frequencies, as all actions within FP1 appear
in more than half (> 50%) of the collected traces. This frequent pat-
tern generally reflects a human-like coding process, encompassing
requirement analysis from multiple perspectives, clarification of
ambiguities, comparison of alternative solutions, code implementa-
tion, and subsequent review to identify potential defects. Frequent
patterns FP3, FP4, and FP5 are extensions of FP1, incorporating
UTC, FLW, or STY, respectively. These variations typically depend
on the specific challenges faced by the LRMs: for example, when
validation or verification is required, the model performs Unit Test
Creation (UTC) to clarify logic; when inconsistencies are noticed,
it performs Flaw Identification (FLW); and when readability or con-
ventions are at stake, it enforces code Style Checks (STY). While
FP2 is a simplified version of FP1, where the LRM perceived that it
is not necessary to perform the intermediary step of Scaffold Code
Generation (SCG) and directly work on the final code.

The notable outlier among the top five is FP5. Unlike the others,
FP5 omits Implementation Generation and Reflection. In this pat-
tern, after performing Requirements Gathering (P1) and Solution
Planning (P2), the LRMs directly output generated code as the final
answer without additional reasoning or review on implementation.
This behavior tends to occur in straightforward tasks where the
solution is clear and no further analysis is deemed necessary.

Breakdown Results. Figure 4 shows how the top five patterns
are distributed across different dependency levels. These patterns
appear most often in complex levels such as class-runnable, file-
runnable, and project-runnable, where solving the tasks require
a broader context. This suggests that LRMs tend to fall back on
recurring reasoning routines when dealing with complex or under-
specified problems. While providing stability, this also introduces
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extra reasoning steps and overhead for simpler tasks at the self-
contained, slib-runnable, and plib-runnable levels. For those more
straightforward cases, LRMs usually apply simpler patterns with-
out Ambiguity Recognition (AMB), since the prompts often already
define problems clearly without relying on in-project context.

Finding 2: LRMs most often follow a human-like coding work-
flow of analyzing requirements, clarifying ambiguities, compar-
ing solutions, implementing code, and reviewing for defects,
with variations such as scaffolding, flaw detection, or style
checks depending on task difficulty. These patterns appear
most frequently in complex dependency levels, while simpler
tasks are handled with lighter reasoning that avoids unneces-
sary steps like ambiguity recognition.

4.2 RQ2: Comparison Across Models

Table 2 presents the top 5 most common reasoning patterns for each
LRM. The results indicate that the Qwen3 models exhibit nearly
identical dominant patterns, suggesting that models within the
same series display highly consistent reasoning behaviors regard-
less of parameter size. Notably, the highlighted pattern corresponds
to FP1 introduced in Section 4.1, which explains its strong preva-
lence across reasoning traces. Although QWQ-32B places slightly
greater emphasis on Style Check (STY), its overall reasoning pat-
terns remain broadly consistent with the Qwen3 models, reflecting
its role as their predecessor developed by the same group. By con-
trast, DeepSeek-R1-7B often deviates from this trend, frequently
omitting the Implementation Generation phase in its reasoning
trace. Moreover, in our experiments, DeepSeek-R1-7B follows a
more linear, waterfall-like reasoning style, whereas other models
adopt a more cyclical, iterative approach. This difference is evident
in its lower frequency of Solution Comparison (CMP), Ambiguity
Recognition (AMB), Edge Case Identification (EGC), and Alternative
Comparison (ALT), which occur in only 15-46% of traces compared
to over 80% in the Qwen3 and QWQ-32B models’ traces. Such
divergence underscores the strong influence of training data, as
Qwen-family models and DeepSeek models were trained on differ-
ent reasoning traces, which in turn shaped their distinct reasoning
styles.

Finding 3: LRMs in the Qwen3 series exhibit highly similar
reasoning behaviors across parameter sizes, generally follow-
ing an iterative, cyclical style. In contrast, DeepSeek-R1-7B
adopts a more linear, waterfall-like reasoning pattern, reflect-
ing a distinct approach that may stem from differences in the
reasoning traces used during training.

4.3 RQ3: Impact on Correctness

To assess the impact of reasoning behaviors on functional correct-
ness, we analyze the statistical correlation between the Pass@1
metric and the observed reasoning actions and patterns. Table 3
reports Pass@1 results for each LRM across different dependency
levels. The results for Qwen3 models with and without reasoning
indicate that enabling reasoning has minimal impact on correctness.
Consequently, our analysis focuses on the characteristics of reason-
ing behaviors rather than the binary setting of reasoning enabled



Conference’17, July 2017, Washington, DC, USA

Kevin Halim, Sin G. Teo, Ruitao Feng, Zhenpeng Chen, Yang Gu, Chong Wang, and Yang Liu

Table 1: Top-5 common reasoning action patterns across all reasoning traces. The most frequent pattern, along with its
occurrences in other patterns, is highlighted.

Action Pattern

| Frequency # (%)

FP1: TSK, CTX, CST, KRL, CFL, CMP, AMB, SCG, CCG, ALT, EGC, SFA
FP2: TSK, CTX, CST, KRL, CFL, CMP, AMB, CCG, ALT, EGC, SFA

207 (17.48%)
188 (16.35%)

FP3: TSK, CTX, CST, KRL, CFL, CMP, AMB, SCG, CCG, UTC, ALT, EGC, SFA 57 (4.96%)
FP4: TSK, CTX, CST, KRL, CFL, CMP, AMB, SCG, CCG, ALT, EGC, FLW, SFA 53 (5.61%)
FP5: TSK, CTX, CST, KRL, CFL, CMP, AMB, SCG, CCG, ALT, EGC, STY, SFA 52 (4.52%)
Others \ 599 (52.09%)

Table 2: Top 5 common reasoning patterns across LRMs. The most frequent pattern (FP1 in RQ1) shared among LRM:s is

highlighted.

DeepSeek-R1-7B

Qwen3-1.7B

Qwen3-8B

Qwen3-14B

QWOQ-32B

TSK, CTX, CST, KRL, CFL, SFA

TSK, CTX, CST, KRL, CFL, CMP,
AMB, CCG, ALT, EGC, SFA

TSK, CTX, CST, KRL, CFL, CMP,
AMB, SCG, CCG, ALT, EGC,
SFA

TSK, CTX, CST, KRL, CFL, CMP,
AMB, SCG, CCG, ALT, EGC,
SFA

TSK, CTX, CST, KRL, CFL, CMP,
AMB, SCG, CCG, ALT, EGC,
SFA

TSK, CTX, CST, KRL, CFL, STY,
SFA

TSK, CTX, CST, KRL, CFL, CMP,
AMB, SCG, CCG, ALT, EGC,
SFA

TSK, CTX, CST, KRL, CFL, CMP,
AMB, CCG, ALT, EGC, SFA

TSK, CTX, CST, KRL, CFL, CMP,
AMB, CCG, ALT, EGC, SFA

TSK, CTX, CST, KRL, CFL, CMP,
AMB, SCG, CCG, ALT, EGC,
STY, SFA

TSK, CTX, CST, KRL, CFL, CMP,
AMB, SCG, CCG, ALT, EGC,
SFA

TSK, CTX, CST, KRL, CFL, CMP,
AMB, SCG, CCG, ALT, EGC,
FLW, SFA

TSK, CTX, CST, KRL, CFL, CMP,
AMB, SCG, CCG, ALT, EGC,
FLW, SFA

TSK, CTX, CST, KRL, CFL, CMP,
AMB, SCG, CCG, ALT, EGC,
FLW, SFA

TSK, CTX, CST, KRL, CFL, CMP,
AMB, SCG, CCG, UTC, ALT,
EGC, SFA

TSK, CTX, CST,KRL, CFL, CMP,
SFA

TSK, CTX, CST, KRL, CFL, CMP,
AMB, CCG, ALT, EGC, STY,
SFA

TSK, CTX, CST, KRL, CFL, CMP,
AMB, SCG, CCG, ALT, EGC,
STY, SFA

TSK, CTX, CST, KRL, CFL, CMP,
AMB, SCG, CCG, UTC, ALT,
EGC, SFA

TSK, CTX, CST, KRL, CFL, CMP,
AMB, CCG, ALT, EGC, SFA

TSK, CTX, CST, KRL, CFL, SCG,
SFA

TSK, CTX, CST, KRL, CFL, CMP,
AMB, SCG, CCG, ALT, EGC,

TSK, CTX, CST, KRL, CFL, CMP,
AMB, CCG, ALT, EGC, FLW,

TSK, CTX, CST, KRL, CFL, CMP,
AMB, CCG, EGC, SFA

TSK, CTX, CST, KRL, CFL, CMP,
AMB, SCG, CCG, UTC, ALT,

STY, SFA SFA

EGC, STY, SFA

versus disabled. For DeepSeek-R1-7B and QWQ-32B, which do not
support disabling reasoning, only results with reasoning (w/ R) are
reported.

4.3.1 Individual Reasoning Actions. We employ the phi-coefficient
(¢) [10] to quantify the correlation between each reasoning action
and the correctness of the generated code. A positive ¢ indicates
that the presence of an action correlates with higher correctness, a
negative ¢ suggests the action is associated with lower correctness,
and values near zero imply little to no correlation.

Figure 5 presents the correlations between each reasoning action
and the correctness of the generated code. Among all actions, Unit
Test Creation (UTC) shows the strongest influence, with a weak
positive correlation to correctness. This indicates that generating
unit tests helps LRMs validate their own logic, promoting more
thorough reasoning and increasing the chance of producing correct
outputs. By contrast, Constraint Identification (CST), Ambiguity
Recognition (AMB), and Solution Comparison (CMP) exhibit weak
negative correlations. These actions often appear when prompts
and contexts are unclear or under-specified, leading LRMs to make
additional assumptions. Such assumptions may be incorrect, while
overly rigid constraints can prematurely narrow the solution space,
and repeated ambiguity recognition or comparison may lead to rea-
soning loops and inefficiency. As a result, these behaviors increase
cognitive load without reliably improving—and sometimes even
reducing—the correctness of the final solution.

4.3.2 Combined Reasoning Actions. We further examine whether
specific combinations of reasoning actions influence the correct-
ness of the generated code. To this end, we apply the Apriori al-
gorithm [19], a classic association rule mining method commonly

used to discover frequent itemsets and their correlations within
large datasets. By treating reasoning actions as items and reasoning
traces as transactions, Apriori allows us to identify combinations of
actions that are strongly associated with successful code generation
outcomes. It is worth noting that the mined combinations may be
subsequences of the complete reasoning patterns identified in RQ1.

Overall Results. Using this approach, we mine several action
combinations that are linked to generated code successfully passing
all test cases for a given task. Table 4 reports the top 10 such com-
binations, where the ratio indicates the proportion of conversions
resulting in correct solutions. The presence and co-occurrence of
Unit Test Creation (UTC), Self-Assertion (SFA), and Task Identi-
fication (TSK) are positively correlated with higher success rates.
Consistent with the findings in the previous section, UTC emerges
as the strongest individual predictor of correctness, while its com-
bination with TSK and SFA achieves the highest conversion ratio
from generation attempts to correct outputs. This suggests that by
having a deeper understanding of the problem, LRMs can construct
more comprehensive unit tests, which improves their ability to
self-assert solutions and increases the likelihood of passing test
cases.

Breakdown Results. Breaking down the results by task depen-
dency level, Table 5 presents the top-10 combinations mined by the
Apriori algorithm that lead to passing all test cases. Due to the spar-
sity of pass results on higher complexity level tasks, no common
combinations emerge even with a minimal confidence threshold
(0.02) at the project-runnable level tasks, alongside a significant
drop in confidence level for class-runnable and file-runnable tasks
of around 0.2 — 0.3 compared to the lower complexity tasks with a
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Table 3: Pass@1 scores on code generation tasks (%). w/ R and w/o R denote results with and without reasoning enabled,
respectively. Since DeepSeek-R1-7B and QWQ-32B do not support disabling reasoning, only w/ R results are reported for these

models.

Category | DeepSeek-R1-7B  Qwen3-1.7B Qwen3-8B Qwen3-14B QWQ-32B

‘ w/R w/R woR wR woR wR woR w/R
self-contained 28.57 40.00 42.86 51.43 48.57 51.43 48.57 54.29
slib-runnable 25.00 39.29 35.71 50.00 50.00 50.00 53.57 46.43
plib-runnable 19.05 19.05 23.81 28.57 28.57 28.57 28.57 38.10
class-runnable 10.91 12.73 1455 23.64 1455 23.64 21.82 18.52
file-runnable 10.29 17.65 23.53 25.00 23.53 25.00 26.47 19.12
project-runnable 4.35 4.35 13.04 4.35 8.70 13.04 4.35 4.35
Overall ‘ 15.22 21.30 24.78 29.57 27.39 30.87 30.00 27.83
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Table 4: Top 10 mined common action combinations leading
to passing tests.

No | Action Combinations

TSK, UTC, SFA

TSK, UTC

TSK, CTX, UTC, SFA
TSK, CFL, UTC, SFA

TSK, CTX, UTC

TSK, CFL, UTC

TSK, CTX, CFL, UTC, SFA
TSK, CTX, CFL, UTC
TSK, UTC, EGC, SFA
TSK, KRL, UTC, SFA

O 0NN U R W =

—_
S

confidence value of > 0.5. Consistent with the overall results, the
overlaps across the five levels highlight Unit Test Creation (UTC)
as the most frequent action associated with correct outcomes.
Beyond these shared actions, each dependency level exhibits
distinct patterns. There are noticeably fewer diverse actions for
self-contained tasks. This reflects that such tasks with no dependen-
cies and reduced complexity allow LRMs to focus on identifying
tasks, and perform verification through Unit Test Creation (UTC).
Slib-runnable tasks, which rely on standard libraries, are typically
functionally well-defined and thus elicit relatively straightforward
reasoning behaviours. With the reliance in standard libraries, LRM
would need to perform Context Identification (CTX) to distinguish
the need for third-party or standard libraries and perform the least
Self-Assertion (SFA), which could indicate that LRM is overly con-
fident in the generated code. In contrast, plib-runnable tasks fre-
quently involve Knowledge Recall (KRL) and Alternative Explo-
ration (ALT) with both implementation actions of Scaffold Code
Generation (SCG) and Complete Code Generation (CCG), indicating
that LRMs tend to explore key components, such as usage patterns
of public library APIs and verify the results, compare with solutions
using other libraries, before producing a final, correct implemen-
tation. Class-runnable tasks, which rely on code defined within
the same class, have a noticeable lack of Edge Case Generation
(EGC), Unit Test Creation (UTC), and Complete Code Generation in
(CCG), suggesting that LRMs prioritize compatibility with defined

oV
Figure 5: Correlation between reasoning actions and code correctness.

code over robustness and exploratory code generation. Finally, file-
runnable tasks with dependencies outside of the class require a lot
of context not provided within the docstrings, and the LRM also
performed fewer Unit Test Creation (UTC) relative to tasks that
require lower-level dependencies. However, unlike class-runnable
tasks, file-runnable tasks LRMs would perform Complete Code Gen-
eration (CCG) and Edge Case Generation (EGC), suggesting that
at this dependency level, LRMs may be less able to produce final
code directly and instead perform additional reasoning processes
to ensure correctness of the output. The differences across depen-
dency levels demonstrate that LRMs can, to some extent, adapt their
reasoning behaviours to produce accurate solutions based on the
provided task descriptions (docstrings) and code contexts (function
signatures).

Finding 4: LRMs adapt their reasoning strategies based on task
dependency levels: simpler, self-contained or standard-library
tasks trigger minimal, focused reasoning with unit test creation,
while tasks relying on public libraries or external files induce
more exploratory and verification-focused behaviors. Tasks
with intra-class dependencies prioritize compatibility to exist-
ing code context over robustness, whereas tasks with broader
file-level dependencies elicit additional reasoning steps, such
as edge case handling and complete code generation, to en-
sure correctness. Overall, LRM reasoning is context-sensitive,
adjusting the depth and type of actions according to task com-
plexity and dependency structure.

4.3.3 Key Observations and Insights. We further analyze the reason-
ing behaviors of LRMs and highlight both the positive and negative
aspects of specific patterns.

Preference in library selection. Within the KRL (Knowledge
Recall) action, LRMs may propose solutions using libraries that are
more efficient than naive approaches. For example:
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Table 5: Top 10 mined combinations across dependency types leading to test pass. Pass results are sparse at the project-runnable
levels, preventing the emergence of common combinations even under a minimal confidence threshold (0.02). Highlighted are

the frequent intersections shared across all combinations.

No ‘ self-contained

slib-runnable

plib-runnable

class-runnable

file-runnable

TSK, CTX, CST, KRL, CFL, SFA
TSK, CTX, CST, KRL, SFA
TSK, CTX, KRL, CFL, SFA
TSK, CTX, KRL, SFA

TSK, CTX, CST, CFL, SFA
TSK, CTX, CST, CFL

TSK, CTX, CST, SFA

TSK, CTX, CST

TSK, CTX, CFL, SFA

TSK, CTX, CFL

TSK, CTX, CST, KRL, CFL, SFA
TSK, CTX, CST, KRL, SFA
TSK, CTX, CST, CFL, SFA

TSK, CTX, CST, SFA

TSK, CTX, CST, KRL, CFL, EGC,
SFA

TSK, CTX, CST, KRL, CFL, CCG,
SFA

TSK, CTX, CST, CFL, EGC, SFA
TSK, CTX, CST, CFL, CCG, SFA
TSK, CTX, CST, KRL, CFL, CCG,

EGC, SFA
TSK, KRL, CFL, CCG, EGC, SFA

1 | TSK, UTC, SFA TSK, CTX, CFL, UTC, SFA TSK, CTX, CST, KRL, CFL, UTC,
SFA

2 | TSK, CTX, UTC, SFA TSK, CTX, CFL, UTC TSK, CTX, CST, KRL, CFL, UTC,
EGC, SFA

3 | TSK, CFL, UTC, SFA TSK, CTX, KRL, CFL, UTC, SFA  TSK, CTX, CST, KRL, CFL, CCG,
UTC, SFA

4 | TSK, CTX, CFL, UTC, SFA TSK, CTX, KRL, CFL, UTC TSK, CTX, CST, KRL, CFL, CCG,
UTC, EGC, SFA

5 | TSK, UTC, EGC, SFA TSK, CTX, CFL, CCG, UTC, SFA  TSK, CTX, CST, KRL, CFL, UTC,
ALT, EGC, SFA

6 | TSK, CTX, UTC, EGC, SFA TSK, CTX, CFL, CCG, UTC TSK, CTX, CST, KRL, CFL, UTC,
ALT, SFA

7 | TSK, CFL, UTC, EGC, SFA TSK, CTX, CFL, UTC, EGC, SFA  TSK, CTX, CST, KRL, CFL, CCG,
UTC, ALT, EGC, SFA

8 | TSK, CTX, CFL, UTC, EGC, SFA TSK, CTX, CFL, UTC, EGC TSK, CTX, CST, KRL, CFL, CCG,
UTC, ALT, SFA

9 | TSK, CTX, KRL, UTC, SFA TSK, CTX, KRL, CFL, UTC,EGC  TSK, CTX, CST, KRL, CFL, SCG,
CCG, UTC, ALT, EGC, SFA

10 | TSK, CTX, CCG, UTC, SFA TSK, CTX, KRL, CFL, UTC,EGC  TSK, CTX, CST, KRL, CFL, SCG,
UTC, SFA

E.g., “But the regex approach might be more efficient, especially
if there are many keys. Because the loop approach would scan
the entire string for each key, whereas the regex can find all
placeholders in one pass. ...”

— by QWQ-32B on Task 62ece4982e6aefcf4aabbd62

However, this behavior has limitations. LRMs may misidentify the
required library due to ambiguities in the docstring or confusion
between Python libraries/functions with overlapping names or
functionality. Additionally, LRMs may lack up-to-date knowledge
of certain libraries, or in some cases may avoid using libraries
altogether when none are explicitly specified in the prompts.

Ambiguity recognition and reliability of assumptions. LRMs
can detect missing or ambiguous information in prompts, as shown
by their high frequency of Ambiguity Recognition (AMB) on class-
runnable (82.18%) and file-runnable (83.24%) tasks. These tasks often
lack necessary contextual details in the docstring. However, am-
biguity can also harm reasoning quality. As shown in Figure 6,
unclear object types in input and return statements caused the LRM
to fall into repetitive reasoning cycles without making progress.

Consistency in the implementation phase. The Implemen-
tation phase, which includes both scaffold and complete code gen-
eration, is the only phase not consistently present in reasoning
traces, appearing in only 30% to 55% of cases across all dependency
levels.. In some straightforward tasks, the LRMs skips scaffold or
concrete code generation and move directly to cthe onclusion or
review. Another observation is that the Complete Code Generation
(CCQG) action does not always align with the final output. Reason-
ing traces may contain documentation-like explanations that are
omitted in the final output, partly because the study’s prompt ex-
plicitly required outputting only code. This highlights the need for
caution when analyzing reasoning traces, since they may not fully
correspond to the generated output.

Test case creation and reliability issues. LRMs display software-
engineering-like behavior by generating unit tests for their own

Force decoding obj with 'utf-8' if it is a numpy.bytes or bytes
Args:

obj: consistency config
Returns:

returns the bytes object corresponding to “obj’ in case it is a string using UTF-8 else return “obj’

Given the time I've spent and the confusion, I'll proceed with the code that decodes bytes to string, and
returns obj otherwise. Even though the return statement is conflicting, perhaps it’s a mistake. So the
code is:

import numpy as np
def force_string(obj):
if isinstance(obj, (bytes, np.bytes_)):
return obj.decode('utf-8’)
else:
return obj

But this doesn't match the return statement. However, given the function's name is force_string, this
seems plausible.

Alternatively, maybe the return statement is supposed to say that if the object is a bytes, return the
decoded string. But the wording is incorrect.

In any case, I'll proceed with this code, assuming that the function is supposed to return a string, and
the return statement in the docstring is incorrect.

Figure 6: An example of harmful ambiguity recognition:
Qwen3-1.7B becomes stuck in a loop of clarifying ambigui-
ties and making assumptions (see highlighted sentences).

code without explicit prompting. However, this behavior is inconsis-
tent. LRMs occasionally generate test cases for lower-dependency
tasks, such as self-contained (40%) and slib-runnable (32%) levels,
but they rarely do so for higher-dependency tasks, where ambiguity
and missing context make test construction more difficult (< 11%).
More severely, when test cases are created, their correctness is unre-
liable. In Figure 7, the LRM generates test cases but fails to compute
the correct expected output for test case #3. While it constructs the
correct reasoning steps, the final computation is flawed. This aligns
with prior work identifying LRMs’ struggles with mathematical
reasoning under direct prompting [8, 16].

Self-assertion and model confidence. LRMs consistently ex-
hibit self-assertion (SFA), affirming that their generated code satis-
fies the task requirements. However, this does not always reflect
genuine confidence. As illustrated in Figure 8, LRMs sometimes
recognize flaws during reasoning but, due to constraints such as lim-
ited context length or reasoning complexity, still output the flawed
code. This mirrors human developers who, under time pressure,
may knowingly submit imperfect solutions [3].
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Convert human readable file size to bytes
Args:

size (str): a string representing a human readable file size (eg: '500K')
Returns:

int: file size in bytes

GI I

So the code as written would handle the example cases.

Let me test with '500K' -> 500 + Correct.
Another test case: '2M' would be 2 097152, Correct.
What about '1.5G'? 1.5 % 1024”3 = 19 .0, which becomes 1990659072 as int. Correct.

Y

Figure 7: An example of unreliable unit test creation: Qwen3-
14B generates three test cases and deems them all passed
by its generated code, but test case #3 contains an incorrect
expected output.

But I'm not sure about the exact implementation. Given the time, I'll proceed to write the code as per
the steps outlined.
So, the final code would be:

But this code may have issues, like the time_str being parsed incorrectly, but it's the best I can do
under time constraints.

However, the code may not handle all cases, but it's the best attempt.

So, the final code would be as above.

Figure 8: An example of invalid self-assertion: Qwen3-1.7B
acknowledges potential issues but proceeds with the output
nonetheless (see highlighted sentences).

Finding 5: LRMs demonstrate a range of reasoning behaviors
that mirror aspects of human problem solving, including ef-
ficient library use, ambiguity recognition, test case creation,
and self-assertion. However, these behaviors are inconsistent:
library choices may be outdated or incorrect, ambiguity often
leads to flawed assumptions, implementation phases can be
skipped or misaligned with outputs, and generated test cases
are frequently unreliable. Self-assertion is consistently present
but does not guarantee genuine confidence, as LRMs may still
output flawed solutions. Together, these findings highlight
both the adaptability and the current limitations of LRMs in
performing reliable reasoning and producing correct code.

4.4 RQ4: Prompting-based Improvements

We further evaluate the feasibility of two lightweight prompting-
based strategies as potential improvements over our initial prompt,
motivated by the key findings from the previous section:

e GUIDE: Our previous analysis identifies Unit Test Creation
(UTC) as the most positively correlated action with test pass-
ing. Based on this, we design a modified prompt that explicitly
guides LRMs to emulate unit test cases, as shown in Figure 9b.

e CONT: Since LRMs often struggle with ambiguity due to
insufficient context, we test whether providing additional con-
textual information can improve performance. The modified
prompt is illustrated in Figure 9a.

Table 6 compares the Pass@1 scores of the modified prompts
against the original prompt. Overall, both modified prompts yield
slight improvements across most LRMs, with the exception of the
Qwen3-14B variant on the CONT prompting. For more complex
tasks with higher dependencies, such as at the project-runnable level,
incorporating guidelines helps LRMs generate better code, resulting
in improved performance. The consistent gains across different
LRM series and parameter sizes indicate that integrating reasoning
patterns into prompts holds promise as an effective strategy in
prompt engineering and merits further investigation. However, due
to the intrinsic randomness of LRMs, we cannot conclusively claim
that these prompting strategies will always improve performance.
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You are a Python software engineer.

Generate Python code based on the following function signature and docstring.
Do NOT include any explanation, reasoning, or markdown formatting.
Output ONLY the code generated, in python markdown format.

## Tips
You should follow a test-driven development approach, first generating comprehensive
unit tests before writing the actual code.

[Function Signature]
[Human Docstring]

(a) GUIDE prompt template.

You are a Python software engineer.

Generate Python code based on the following function signature and docstring.
Do NOT include any explanation, reasoning, or markdown formatting.

Output ONLY the code generated, in python markdown format.

## Context

Imported Packages: [Package dependencies]
Within file: [File dependencies]

Within class: [Class dependencies]

[Function Signature]
[Human Docstring]

(b) CONT prompt template.

Figure 9: Prompt templates for the two lightweight prompt-
ing methods, with newly added lines highlighted and lines
removed are bolded.

Finding 6: Our results highlight the potential of incorporating
context or reasoning guidelines into prompts to enhance LRM-
generated code. The GUIDE prompt variant, which integrates
a UTC-enhanced design, shows slight improvements across
different LRMs.

5 Discussion
5.1 Implications for Researchers

Reasoning Behavior Visualization. Our study introduces a tax-
onomy of fine-grained reasoning actions, showing that LRMs ex-
hibit distinct reasoning patterns across different tasks. To deepen
understanding of these reasoning traces, future research can de-
velop visualization techniques grounded in our taxonomy and an-
notated data, thereby helping to open the black box of model rea-
soning in code generation. Such visualizations can enhance the
interpretability of LRMs and foster greater developer trust in their
outputs.

Reasoning Capability Enhancement. Our study investigates
the feasibility of prompting-based improvement strategies, show-
ing that while these methods yield modest gains, there remains
considerable room for advancement. Future research can explore
more sophisticated approaches to enhancing reasoning capabilities.
For instance, we observe that DeepSeek-R1 tends to adopt a linear,
waterfall-style reasoning process, whereas Qwen3 models favor
an iterative reasoning process, achieving higher functional cor-
rectness. This suggests the potential of generating higher-quality
reasoning traces that emulate realistic iterative programming prac-
tices for model fine-tuning. Likewise, the strong positive correlation
between UTC and test pass rates highlights the promise of incorpo-
rating the test-driven development (TDD) paradigm into the LRMs
for code generation.
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Table 6: Pass@1 score for code generation task (%) with and without prompt modifications.

Category DeepSeek-R1-7B Qwen3-1.7B Qwen3-8B Qwen3-14B QWQ-32B 32B
Original CONT GUIDE Original CONT GUIDE Original CONT GUIDE Original CONT GUIDE Original CONT GUIDE

self-contained 28.57 37.14 28.57 40.00 40.00 34.29 51.43 42.86 54.29 51.43 48.57 57.14 54.29 51.43 54.29
slib-runnable 25.00 25.00 21.43 39.29 28.57 32.14 50.00 50.00 46.43 50.00 39.29 50.00 46.43 53.57 50.00
plib-runnable 19.05 19.05 19.05 19.05 23.81 19.05 28.57 23.81 33.33 28.57 38.10 33.33 38.1 33.33 38.10
class-runnable 10.91 12.73 14.55 12.73 23.64 20.00 23.64 23.64  21.82 23.64 23.64 25.45 18.52 20.00 16.36
file-runnable 10.29 10.29 10.29 17.65 16.18 19.12 25.00 30.88 22.06 25.00 26.47 25.00 19.12 23.53 22.06
project-runnable 4.35 0.00 4.35 4.35 8.70 8.70 4.35 8.70 13.04 13.04 8.70 13.04 4.35 13.04 17.39
overall 15.22 16.52 15.65 21.30 23.04 2217 29.57 30.43 30.00 30.87 30.00  32.61 27.83 30.43 30.00

5.2 Implication for Software Developers

Prompt/Context Engineering for LRMs. Since LRMs inher-
ently exhibit CoT-like reasoning, some argue that carefully crafted
prompts are unnecessary when using them. However, our study sug-
gests that prompt engineering remains important for effective code
generation. When designing prompts, practitioners should provide
concise instructions while ensuring that the problem statement
and contextual information, such as well-written docstrings, rele-
vant libraries, classes, or attributes, are explicit and complete. Our
findings show that incomplete, unclear, or ambiguous prompts can
hinder LRMs’ reasoning and negatively impact performance. This
insight also highlights the emerging role of context engineering,
which focuses on supplying precise and comprehensive contextual
information tailored to the task requirements.

Reasoning Process Inspection. Our study provides insights into
the limitations of LRMs’ reasoning in code generation. For instance,
LRMs still struggle to reliably perform tasks such as generating tests
or maintaining sound assumptions. This indicates that developers
should not only carefully review and validate the code produced by
LRMs for potential flaws but also examine and verify the models’
reasoning traces.

6 Threats to Validity

External Validity. Threats to external validity concern the ex-
tent to which our findings generalize across different languages.
Due to the imbalanced distribution of dependency scopes in Java,
we focused our analysis on reasoning traces in Python. Explor-
ing reasoning traces for other programming languages remains
an important direction for future work. Another potential threat
is the quality of code generation tasks considered. We mitigated
this by using CoderEval, a widely adopted dataset of real-world
programming tasks that spans multiple dependency levels.
Internal Validity. Threats to internal validity mainly relate to
manual annotation and taxonomy construction. To address this,
we applied standard conflict-resolution strategies during taxonomy
development to ensure reliability. Additionally, since the model tem-
perature is non-zero, as recommended by the LRM publishers [12],
outputs are inherently nondeterministic. In our experiments, set-
ting the temperature to zero led to inconsistent behavior, including
timeouts and incoherent repetitive reasoning. To mitigate potential
reproducibility concerns, we documented all model responses and
outputs in our replication package.

7 Related Work

LLMs in Code Generation. Large language models (LLMs) have
been increasingly applied to software engineering tasks, particu-
larly code generation [14, 17, 26, 36, 40, 43]. Existing literature [6,
20, 28, 31] has primarily focused on the GPT series, most notably
GPT-4 as the primary benchmark for performance evaluation [18].
Alongside general-purpose models, several LLMs have been explic-
itly trained for code-related tasks, such as Code Llama [34] and
Qwen2.5-Coder [21]. To assess these models, various datasets have
been created, such as HumanEval [7], MBPP [2], ClassEval [13],
DevEval [25], and CoderEval [39].

LLM Reasoning. With the emergence of large reasoning models
(LRMs) and greater transparency enabled by their explicit interme-
diate reasoning steps, there has been a growing interest in analysing
the models’ reasoning traces to understand their internal decision-
making processes better. Recent studies have sought to categorise
the reasoning behaviour of large language models across various
domains. Marjanovic et al. [29], inspired by common human reason-
ing, derive a general taxonomy of DeepSeek-R1 reasoning patterns
on a diverse set of problems. In their study, Ming et al. [30] explore
and derive a taxonomy on LLM reasoning behavior as a critique
and when faced with critique. Plaat et al. [33] conduct a survey and
propose a 3-stage taxonomy on LLM reasoning for math problems.
Bandyopadhyay et al. [4] derives common phases on how LLM
would reason as a pipeline/structure. Several studies have directly
addressed reasoning within the context of code generation. Wei et
al.[37] investigate the reasoning model’s capability in performing
code generation on the competitive programming domain and high-
light some flaws in the code generated by LLM. Liu et al. [27] in
their proposed framework evaluation CodeMind, highlight reason-
ing model capability and limitation on control flow, and show that
code generation ability, despite being correlated, does not imply
code reasoning. Prompt variation has also been explored as a tool
for influencing reasoning behavior. In their study, Chatziveroglou
et al. [6] explored the effect on LLM reasoning through prompt
variation on math problems. Mu et al. [31] in ClarifyGPT propose a
framework to enhance LLM on code generation through ambiguity
detection and clarification.

8 Conclusion

In this paper, we conduct an empirical study of reasoning behav-
iors in large reasoning models (LRMs) for code generation. We
develop a taxonomy of 15 reasoning actions across four phases, re-
veal common and model-specific reasoning patterns, and show how
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these behaviors affect functional correctness. Finally, we demon-
strate that lightweight, reasoning-oriented prompting strategies
can further improve code generation. These findings advance our
understanding of LRM reasoning and provide practical guidance
for automated software development.

9 Data Availability

All of the artefacts and LLM output are made publicly available and
can be accessed here:
https://github.com/ReasoningPattern/ReasoningPattern
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